Разделы сайта






Автоматизация и диспетчеризация водоканалов

Такое определение водоканал имел до начала развития сетей городского водоснабжения.




Автоматизация котельной

При помощи программного обеспечения вы можете получить значительную экономию



  • Автоматизация инженерных сетей
  • Промышленные компьютеры и ПО
  • Автоматизация производства
  • О промышленной автоматизации
  • Системный интеграторАвтоматизация инженерных сетейАвтоматизация котельной ⇒ Применение автоматизированных тепловых пунктов - ключ к энергосбережению в системах централизованног

    Применение автоматизированных тепловых пунктов - ключ к энергосбережению в системах централизованног

    Существующие системы централизованного теплоснабжения были спроектированы в условиях социалистического хозяйства, и этот факт в значительной степени определяет их низкую энергетическую эффективность в новых условиях. Основной функциональной задачей, которая ставилась перед системой теплоснабжения, являлось нормативное обеспечение теплом потребителей в соответствии с температурным графиком. В рыночных условиях основной функциональной задачей является обеспечение потребителям возможности самим регулировать расход тепла при обязательном коммерческом учете потребленной энергии. Другими словами, в рыночных условиях потребитель должен иметь возможность купить необходимое количество тепла.

    Характерный пример реализации указанного рыночного принципа в централизованных системах теплоснабжения представляют собой датские системы централизованного теплоснабжения. Здесь широко используется количественный способ регулирования, поддерживается повышенная температура в магистральных сетях, отбор тепла потребителями осуществляется с использованием автоматизированных индивидуальных тепловых пунктов (АИТП) при независимом подключении.

    Так как отечественные системы централизованного теплоснабжения проектировались с точки зрения несколько иной функциональной задачи и средств для коренной реконструкции нет, то модернизация существующих систем теплоснабжения должна осуществляться поэтапно. Первым этапом представляется целесообразное введение АИТП, включающих средства коммерческого учета и регулирования потребления тепловой энергии.

    В существующих тепловых сетях, как правило, применяется схема с зависимым присоединением системы отопления, при которой теплоноситель из сети поступает непосредственно в отопительные приборы. Такая схема характеризуется жесткой гидравлической связью между тепловой сетью и системой отопления здания. Это ограничивает возможности центрального количественного регулирования, т.к. существенное изменение расхода воды в тепловой сети приводит к потере гидравлической устойчивости и нарушению расчетного гидравлического и теплового режимов. Регулирование отпуска теплоты на ТЭЦ осуществляется качественным способом, т.е. за счет изменения температуры подающего теплоносителя в сети в зависимости от температуры наружного воздуха при постоянном расходе.

    При проектировании здания осуществляется настройка гидравлического и теплового режима системы отопления для самой низкой температуры наружного воздуха, принимаемой в качестве расчетной (для г. Челябинска расчетная температура равна -34 °С). Из-за большой инерции систем централизованного теплоснабжения регулирование ведется не по текущей, а по усредненной наружной температуре за промежуток времени 6-12 часов, что приводит к несоответствию фактического и расчетного значений отпускаемой тепловой мощности.
    Для обеспечения нагрузки горячего водоснабжения (ГВС) в двухтрубных водяных системах теплоснабжения центральное качественное регулирование ведется по совмещенному графику отопления и ГВС, Температура сетевой воды при этом ограничивается снизу на уровне около 70С°, что при отсутствии количественного регулирования тепловых нагрузок отопления и ГВС здания приводит к перегреву помещений и перерасходу тепловой энергии. Из графика на видно, что перегрев помещений начинается при повышении температуры наружного воздуха Тн до -8 С°.

    В настоящее время большинство систем отопления и ГВС жилых и общественных зданий работает в неуправляемом режиме. Поэтому, основным направлением работ является модернизация существующих тепловых пунктов зданий путем разработки блочных АИТП высокой заводской готовности с использованием отечественного оборудования.

    АИТП зданий, реализуемые на базе существующих тепловых пунктов, должны работать в автономном режиме без постоянного обслуживающего персонала, выполняя следующие основные функции:

    1) автоматическое регулирование системы отопления, обеспечивая рациональное расходование тепловой энергии и комфортные условия у потребителей;

    2) автоматическое регулирование системы горячего водоснабжения, поддерживая температуру горячей воды на заданном уровне с необходимой точностью для всех режимов потребления;

    3) защиту системы теплоснабжения здания от аварийного изменения параметров теплоносителя;

    4) учет потребляемой тепловой энергии.

    Основным элементом современной системы автоматического регулирования (САР) теплоснабжения здания является микропроцессорный контроллер. В настоящее время отечественными и зарубежными фирмами предлагается широкий спектр специализированных контроллеров теплоснабжения. При этом контроллеры импортного производства имеют высокую стоимость. Кроме того, они ориентированы в основном на применение в независимых системах отопления, которые в наших условиях используются достаточно редко. Основным недостатком специализированных контроллеров является то, что они функционируют по заранее заложенным алгоритмам регулирования. Применение же программируемых контроллеров, также достаточно широко представленных на рынке, существенно повышает стоимость САР.



    Посетители также читают:

    Блочные индивидуальные тепловые пункты. Возможности и типовые решения
    Снижение общих затрат при использовании подобных систем осуществляется за счет нескольких факторов: погодной компенсации, внесения корректировок в режимы работы в зависимости от времени суток, использования режима праздничных и выходных дней


    Источник: http://www.kontel.ru


    2010-2024 Информационный проект